Falowniki przemysłowe

Falowniki przemysłowe Po zaprojektowaniu sieci kombinacyjnej i sekwencyjnej, realizującej daną funkcję logiczną, przechodzi się do etapu realizacji projektu, korzystając z elementów dynamicznych MOS określonego typu: dwufazowych współczynnikowych lub bez współczynnikowych bądź czterofazowych. Przy tym muszą być spełnione warunki dotyczące możliwości obciążenia stopni sterowanych kolejnymi fazami sygnału zegarowego przez układy sterowane innymi fazami. Tak zrealizowany projekt poddaje się procesowi minimalizacji liczby elementów. Ten etap projektowania układów scalonych MOS jest szczególnie trudny i osiągnięte wyniki zależą w znacznym stopniu od doświadczenia i wyobraźni projektanta. Każdy z producentów układów scalonych MOS ma własne, pilnie strzeżone metody projektowania układów wielkoscalonych MOS. Z tego względu literatura na ten temat jest bardzo uboga.

Szczegóły strony www.lenze.net.pl:

Komentarze:

Dodaj swój komentarz »

Podlinkuj stronę www.lenze.net.pl:

Falowniki przemysłowe

Odwiedziny robotów:

Odwiedziny yahoo 42 Odwiedziny googlebot 55

Zobacz podobne wpisy w tej kategorii:

  • Sprzedaż falowników i przekładni »

    Oodstawowe układy TTL zaliczane do grupy układów o małej skali integracji. Naturalną tendencją konstruktorów jest dążenie do zwiększenia gęstości upakowania układów, a więc do zwiększenia skali integracji do poziomu, jaki umożliwia aktualny stan technologii półprzewodnikowych układów scalonych. Zwiększenie skali integracji układów scalonych jeszcze silniej uwypukla zalety koncepcji scalania. Rośnie szybkość przełączania układów i ich niezawodność, maleje zaś całkowita moc pobierana przez układy oraz zwiększa się ich gęstość upakowania. Stosowanie układów o zwiększonej skali integracji pozwala na uproszczenie i przyspieszenie projektowania i uruchamiania nowych urządzeń. Konstruktor urządzenia nie musi zajmować się projektami takich podzespołów jak liczniki, rejestry, dekodery, sumatory itd., może natomiast cały wysiłek skierować na optymalne wykorzystanie właściwości gotowych podzespołów — optymalne z punktu widzenia projektowanego urządzenia.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Falownik LG akcesoria »

    Jednym z ograniczeń, które występują przy projektowaniu układu scalonego, jest liczba wejść i wyjść układu. Liczba ta jest uzależniona od dopuszczalnej liczby końcówek standardowych obudów. Kompromis między funkcjonalną złożonością układu logicznego a liczbą końcówek obudowy staje się coraz trudniejszy do rozwiązania w miarę wzrostu skali integracji i niekiedy zmusza do stosowania sztucznych rozwiązań, polegających na przykład na przypisywaniu końcówkom różnych funkcji zależnie od stanów logicznych na innych końcówkach. Dodatkowym ograniczeniem wnoszonym przez obudowę jest maksymalna moc, jaka może się wydzielić w strukturze scalonej zamykanej w obudowie, co limituje liczbę elementów, jakie mogą wejść w skład scalonej sieci logicznej.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Sterowanie falownikami Vacon »

    W każdym tranzystorze jeden z emiterów jest połączony z jedną linią bitu, a drugi — ze wspólną linią słowa. W stanie spoczynku na linii słowa poziom napięcia jest niski, tak iż prąd przewodzącego tranzystora płynie do linii słowa. Dla odczytania informacji z komórki na linię słowa trzeba podać wysoki poziom napięcia. Prąd przewodzącego tranzystora zaczyna płynąć do odpowiadającej temu tranzystorowi linii bitu. Zmiana stanu linii bitu jest wykrywana przez wzmacniacz odczytu. W fazie zapisu komórka jest wybierana w podobny sposób jak przy odczycie. Przy wysokim potencjale na linii słowa stan przerzutnika jest ustalony zależnie od kombinacji napięć w liniach bitów. Przy niskim poziomie napięcia na linii słowa żadne zmiany na liniach bitów nie wpływają na stan komórki.
    Niezależnie od sposobu rozwiązania wewnętrznej sieci logicznej układu scalonego na wejściach i wyjściach układu stosuje się standardowe układy (por. opisy różnych bramek TTL) zapewniające możliwość współpracy z innymi układami na warunkach obowiązujących dla układów określonej serii TTL.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Schematy falowników Siemens »

    W zależności od sposobu wykonania tranzystora MOS możliwe jest uzyskanie dwóch rodzajów tranzystorów:
    a) tranzystora, który może przewodzić prąd między źródłem a drenem przy zerowym napięciu UGS między bramką a źródłem (jest to tranzystor z kanałem zubożanym lub inaczej — tranzystor z kanałem wbudowanym);
    b) tranzystora, w którym dla uzyskania przewodnictwa między drenem a źródłem niezbędne jest przyłożenie między bramką a źródłem napięcia UGS większego od napięcia progowego tranzystora (jest to tranzystor z kanałem wzbogacanym lub inaczej — tranzystor z kanałem indukowanym).

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Grawerowanie oznaczeń »

    Jednakże zasadniczą wadą tranzystorów MOS z kanałem n, wytwarzanych w zasadzie wyłącznie w krzemie o orientacji krystalograficznej (100) jest to, że są one normalnie włączone, to znaczy mają kanał wbudowany. Jednocześnie ładunek powierzchniowy w tlenku izolacyjnym na powierzchni krzemu powoduje powstanie, warstwy inwersyjnej w krzemie, zwierającej sąsiednie elementy.
    Można tego uniknąć przez zastosowanie dwóch środków:
    a) użycie bramki krzemowej zamiast bramki aluminiowej, która
    powoduje, że tranzystor z kanałem n jest normalnie wyłączony;
    b) zwiększenie przewodności powierzchniowej warstwy krzemu podłoża, co powoduje jednak zmniejszenie ruchliwości nośników i stratę zasadniczej zalety układów z tranzystorami n.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Sterowanie napędami »

    Jeżeli nie podejmie się odpowiednich kroków dla właściwego dopasowania linii przesyłowych, to przesyłany sygnał cyfrowy zostanie zniekształcony wskutek odbić na końcach linii. Może to doprowadzić do przedłużenia rzeczywistego czasu propagacji sygnału wskutek tego, że zniekształcony sygnał, cyfrowy nie osiągnie poziomu przekraczającego ustalony poziom progowy.
    Należy także wspomnieć o przesłuchach będących wynikiem przenoszenia się wielko częstotliwościowych składowych sygnału z jednego przewodu na inne. Jest to szczególnie ważne tam, gdzie gęstość upakowania układów scalonych jest duża lub gdzie sygnały przesyłane są na duże odległości liniami przesyłowymi nieekranowanymi.
    Omówienie tych podstawowych zagadnień przesyłania sygnałów cyfrowych poprzedzimy krótkim przypomnieniem teorii linii przesyłowych oraz omówieniem parametrów powszechnie stosowanych typów linii.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Napędy przemysłowe serwis »

    Jeżeli jedno z urządzeń wysyła dwa oddzielne sygnały do innego, poczynając od tego samego momentu, to z powodu różnej szybkości nadajników i odbiorników szyny i różnej szybkości propagacji sygnałów w przewodach szyny (wskutek różnego obciążenia pojemnościowego) może wystąpić opóźnienie tych sygnałów względem siebie. Układy współpracy z szyną UNIBUS są tak zaprojektowane, że ta różnica w czasie (skew) wynosi nie więcej niż 75 ns.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Motoreduktory napędów automatyki »

    Sygnał MSYN dochodzi do każdego urządzenia, przy czym tylko jedno z nich staje się urządzeniem podporządkowanym (slave).
    Urządzenie podporządkowane umieszcza na szynie dane do przesłania oraz wysyła sygnał ich synchronizacji SSYN. Aby urządzenie master mogło te dane odebrać poprawnie, sygnał SSYN powinien pojawić się na wejściu nadajnika szyny (w urządzeniu slave) później niż sygnały danych.
    Po przejściu przez szynę sygnał SSYN dochodzi do urządzenia master gdzie jest opóźniony co najmniej o 75 ns, dla uwzględnienia różnicy czasów propagacji sygnałów w szynie.
    Po opóźnieniu następuje strobowanie danych z wejścia.
    Urządzenie master kończy sygnał MSYN.
    Po opóźnieniu końcowym nie krótszym niż 75 ns następuje zdjęcie z szyny sygnałów adresowych i kontrolnych. Opóźnienie to gwarantuje, że poziom sygnałów adresowych nie zmieni się w żadnym urządzeniu w tym czasie, gdy sygnał MSYN ma jeszcze poziom niski. Zapobiega to fałszywemu wybraniu urządzenia wskutek zmian sygnałów adresowanych przy niskim poziomie sygnału MSYN.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Reduktor typu NMRV »

    Przesyłanie sygnałów cyfrowych w warunkach dużych zakłóceń lub na znaczne odległości wymaga stosowania specjalnych nadajników i odbiorników linii oraz właściwego wyboru linii przesyłowych. Przy niewielkich długościach linii można stosować linie koncentryczne, zapewniające ochronę przed zakłóceniami, ale ze względu na duży koszt celowe jest stosowanie znacznie tańszych linii płaskich lub skrętek (symetrycznych lub asymetrycznych).
    Sygnały cyfrowe można przesyłać w postaci unipolarnych sygnałów liniami jednoprzewodowymi ekranowanymi lub nieekranowanymi (przewodem powrotnym sygnału jest wspólny dla nadajnika i odbiornika przewód masy) albo w postaci sygnałów różnicowych dwuprzewodowymi asymetrycznymi przesyłowymi (na ogół nieekranowanymi).

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Cennik grawerowania »

    Różnicowe przesyłanie sygnałów cyfrowych po symetrycznych dwuprzewodowych liniach przesyłowych umożliwia uzyskanie dużej szybkości przesyłania między urządzeniami o różnych potencjałach masy i w warunkach dużych zakłóceń. Ze względu na symetrię linii przesyłowej wszelkie zakłócenia oraz różnica potencjałów mas urządzeń wchodzą na obydwa przewody jednakowo i jeśli odbiornik sygnału różnicowego ma dostatecznie wielki zakres dopuszczalnych poziomów sygnałów wspólnych oraz odpowiednie tłumienie sygnałów wspólnych, zakłócenia nie mają wpływu na pracę układów.
    Ze względu na pożądaną dużą szybkość przesyłania sygnałów dwuprzewodowe linie przesyłowe są dopasowane, co umożliwia uniknięcie odbić w linii.
    Jeżeli nadajnikiem linii jest układ o niewielkiej rezystancji wyjściowej (źródło napięciowe), to linia może być dopasowana tylko na końcu odbiorczym. Jeśli natomiast nadajnikiem linii jest układ o dużej impedancji wyjściowej (źródło prądowe), linia musi być dopasowana na obydwu końcach.

    Data dodania: 18 12 2014 · szczegóły wpisu »

Najnowsze wiadomości: