Lenze dystrybutor

Lenze dystrybutor Tranzystory MOS mają kilka cech, które predestynują je do stosowania w cyfrowych układach scalonych. Są to następujące cechy.
Jeżeli w układzie scalonym ograniczyć się do jednego typu tranzystorów, np. pMOS, to wszystkie tranzystory na tym samym podłożu są elektrycznie izolowane, gdyż potencjały występujące w układzie zapewniają polaryzację w kierunku zaporowym (lub w najgorszym razie polaryzację zerową) wszystkich złącz p-n. Nie ma więc potrzeby stosowania wysp izolowanych jak w układach bipolarnych. Jedynie w układach MOS o symetrii komplementarnej (zwanych układami COSMOS lub CMOS), zawierających tranzystory MOS, konieczne jest tworzenie wysp izolowanych dla tranzystorów nMOS.

Szczegóły strony www.falowniki.shop.pl:

Komentarze:

Dodaj swój komentarz »

Podlinkuj stronę www.falowniki.shop.pl:

Lenze dystrybutor

Odwiedziny robotów:

Odwiedziny yahoo 40 Odwiedziny googlebot 59

Zobacz podobne wpisy w tej kategorii:

  • Falownik LG akcesoria »

    Jednym z ograniczeń, które występują przy projektowaniu układu scalonego, jest liczba wejść i wyjść układu. Liczba ta jest uzależniona od dopuszczalnej liczby końcówek standardowych obudów. Kompromis między funkcjonalną złożonością układu logicznego a liczbą końcówek obudowy staje się coraz trudniejszy do rozwiązania w miarę wzrostu skali integracji i niekiedy zmusza do stosowania sztucznych rozwiązań, polegających na przykład na przypisywaniu końcówkom różnych funkcji zależnie od stanów logicznych na innych końcówkach. Dodatkowym ograniczeniem wnoszonym przez obudowę jest maksymalna moc, jaka może się wydzielić w strukturze scalonej zamykanej w obudowie, co limituje liczbę elementów, jakie mogą wejść w skład scalonej sieci logicznej.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Schematy falowników Siemens »

    W zależności od sposobu wykonania tranzystora MOS możliwe jest uzyskanie dwóch rodzajów tranzystorów:
    a) tranzystora, który może przewodzić prąd między źródłem a drenem przy zerowym napięciu UGS między bramką a źródłem (jest to tranzystor z kanałem zubożanym lub inaczej — tranzystor z kanałem wbudowanym);
    b) tranzystora, w którym dla uzyskania przewodnictwa między drenem a źródłem niezbędne jest przyłożenie między bramką a źródłem napięcia UGS większego od napięcia progowego tranzystora (jest to tranzystor z kanałem wzbogacanym lub inaczej — tranzystor z kanałem indukowanym).

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Dane techniczne falowników »

    Podstawowy układ inwertera MOS i jego różne. Pozostałe podstawowe funktory logiczne oparte są na dwóch konfiguracjach:
    a) z szeregowo połączonymi tranzystorami przełącznikowymi,
    b) z równolegle połączonymi tranzystorami przełącznikowymi.
    Podstawowe funkcje logiczne realizuje się w tym przypadku podobnie jak w układach dwufazowych: przez szeregowe i równoległe łączenie tranzystorów przełącznikowych. W niektórych spośród stosowanych konfiguracji układów dynamicznych czterofazowych można zrealizować układy o minimalnym opóźnieniu, co pozwala na zwiększenie liczby poziomów funkcji logicznych wykonywanych w jednym okresie powtarzania sygnałów zegarowych. Bardziej szczegółowe omówienie układów dynamicznych czterofazowych znajduje się w pracy.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Falowniki przemysłowe »

    Po zaprojektowaniu sieci kombinacyjnej i sekwencyjnej, realizującej daną funkcję logiczną, przechodzi się do etapu realizacji projektu, korzystając z elementów dynamicznych MOS określonego typu: dwufazowych współczynnikowych lub bez współczynnikowych bądź czterofazowych. Przy tym muszą być spełnione warunki dotyczące możliwości obciążenia stopni sterowanych kolejnymi fazami sygnału zegarowego przez układy sterowane innymi fazami. Tak zrealizowany projekt poddaje się procesowi minimalizacji liczby elementów. Ten etap projektowania układów scalonych MOS jest szczególnie trudny i osiągnięte wyniki zależą w znacznym stopniu od doświadczenia i wyobraźni projektanta. Każdy z producentów układów scalonych MOS ma własne, pilnie strzeżone metody projektowania układów wielkoscalonych MOS. Z tego względu literatura na ten temat jest bardzo uboga.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Przekładnie przemysłowe »

    Następny etap rozwoju układów MOS o wielkiej skali integracji to pamięci półprzewodnikowe. Każda komórka pamięci w pamięciach statycznych zawiera statyczny przerzutnik złożony z dwóch połączonych inwerterów. Dodatkowe tranzystory MOS umożliwiają zapis i odczyt informacji z komórki. Typowym przedstawicielem takich pamięci jest 1024-bitowa pamięć statyczna o dostępie swobodnym 2102 A, w której zastosowano przerzutniki złożone z inwerterów statycznych typu 3, z tranzystorami o kanale n. Czas dostępu wynosi 500 ns (czas cyklu także 500 ns), a moc pobierana około 150 mW. Obecnie produkuje się już pamięci statyczne o pojemnościach do 8192 bitów. Czasy dostępu/cyklu różnych wersji pamięci statycznych MOS wynoszą 100-1000 ns, a moce pobierane 0, 1-M mW/bit.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Sterowanie napędami »

    Jeżeli nie podejmie się odpowiednich kroków dla właściwego dopasowania linii przesyłowych, to przesyłany sygnał cyfrowy zostanie zniekształcony wskutek odbić na końcach linii. Może to doprowadzić do przedłużenia rzeczywistego czasu propagacji sygnału wskutek tego, że zniekształcony sygnał, cyfrowy nie osiągnie poziomu przekraczającego ustalony poziom progowy.
    Należy także wspomnieć o przesłuchach będących wynikiem przenoszenia się wielko częstotliwościowych składowych sygnału z jednego przewodu na inne. Jest to szczególnie ważne tam, gdzie gęstość upakowania układów scalonych jest duża lub gdzie sygnały przesyłane są na duże odległości liniami przesyłowymi nieekranowanymi.
    Omówienie tych podstawowych zagadnień przesyłania sygnałów cyfrowych poprzedzimy krótkim przypomnieniem teorii linii przesyłowych oraz omówieniem parametrów powszechnie stosowanych typów linii.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Motoreduktory napędów automatyki »

    Sygnał MSYN dochodzi do każdego urządzenia, przy czym tylko jedno z nich staje się urządzeniem podporządkowanym (slave).
    Urządzenie podporządkowane umieszcza na szynie dane do przesłania oraz wysyła sygnał ich synchronizacji SSYN. Aby urządzenie master mogło te dane odebrać poprawnie, sygnał SSYN powinien pojawić się na wejściu nadajnika szyny (w urządzeniu slave) później niż sygnały danych.
    Po przejściu przez szynę sygnał SSYN dochodzi do urządzenia master gdzie jest opóźniony co najmniej o 75 ns, dla uwzględnienia różnicy czasów propagacji sygnałów w szynie.
    Po opóźnieniu następuje strobowanie danych z wejścia.
    Urządzenie master kończy sygnał MSYN.
    Po opóźnieniu końcowym nie krótszym niż 75 ns następuje zdjęcie z szyny sygnałów adresowych i kontrolnych. Opóźnienie to gwarantuje, że poziom sygnałów adresowych nie zmieni się w żadnym urządzeniu w tym czasie, gdy sygnał MSYN ma jeszcze poziom niski. Zapobiega to fałszywemu wybraniu urządzenia wskutek zmian sygnałów adresowanych przy niskim poziomie sygnału MSYN.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Sterowanie przemiennikami »

    W maszynie cyfrowej wykorzystującej szynę może jednocześnie odbywać się tylko jedna transmisja między dwoma dowolnymi spośród urządzeń przyłączonych do szyny długiej. W tej sytuacji jedyny sposób zwiększenia szybkości działania tej maszyny polega na zwiększeniu szybkości przesyłania sygnału przez szynę, zwiększenie bowiem szybkości działania procesora czy zmniejszenie czasu cyklu pamięci przez zastosowanie układów scalonych o bardzo dużej szybkości przełączania nie będzie miało wpływu na szybkość przesyłania informacji w szynie. Szybkość przesyłania informacji w szynie zależy od:
    — czasu propagacji sygnału przez nadajniki szyny,
    — czasu propagacji sygnału wzdłuż linii przesyłowych tworzących szynę,
    — różnicy czasu propagacji różnych sygnałów wzdłuż różnych przewodów szyny,
    — czasu propagacji sygnału przez odbiorniki szyny.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Reduktory małych mocy »

    Długość przewodów oraz dwukierunkowość przesyłania sygnałów w szynie długiej determinują jej budowę. Jest to zespół dwukierunkowych linii przesyłowych z dopasowaniem równoległym z obydwu końców. Wzdłuż linii przesyłowej szyny można łączyć w dowolnym miejscu nadajniki i odbiorniki szyny. Ich parametry — rezystancja wejściowa i pojemność wejściowa dla odbiornika oraz upływność wyłączonego nadajnika i jego pojemność powinny być takie, aby zmiany parametrów falowych linii przesyłowej po ich przyłączeniu były nieznaczne.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Reduktor typu NMRV »

    Przesyłanie sygnałów cyfrowych w warunkach dużych zakłóceń lub na znaczne odległości wymaga stosowania specjalnych nadajników i odbiorników linii oraz właściwego wyboru linii przesyłowych. Przy niewielkich długościach linii można stosować linie koncentryczne, zapewniające ochronę przed zakłóceniami, ale ze względu na duży koszt celowe jest stosowanie znacznie tańszych linii płaskich lub skrętek (symetrycznych lub asymetrycznych).
    Sygnały cyfrowe można przesyłać w postaci unipolarnych sygnałów liniami jednoprzewodowymi ekranowanymi lub nieekranowanymi (przewodem powrotnym sygnału jest wspólny dla nadajnika i odbiornika przewód masy) albo w postaci sygnałów różnicowych dwuprzewodowymi asymetrycznymi przesyłowymi (na ogół nieekranowanymi).

    Data dodania: 18 12 2014 · szczegóły wpisu »

Najnowsze wiadomości: