Napędy przemysłowe serwis

Napędy przemysłowe serwis Jeżeli jedno z urządzeń wysyła dwa oddzielne sygnały do innego, poczynając od tego samego momentu, to z powodu różnej szybkości nadajników i odbiorników szyny i różnej szybkości propagacji sygnałów w przewodach szyny (wskutek różnego obciążenia pojemnościowego) może wystąpić opóźnienie tych sygnałów względem siebie. Układy współpracy z szyną UNIBUS są tak zaprojektowane, że ta różnica w czasie (skew) wynosi nie więcej niż 75 ns.

Szczegóły strony www.napedy.ppp.pl:

Komentarze:

Dodaj swój komentarz »

Podlinkuj stronę www.napedy.ppp.pl:

Napędy przemysłowe serwis

Odwiedziny robotów:

Odwiedziny yahoo 42 Odwiedziny googlebot 89

Zobacz podobne wpisy w tej kategorii:

  • Sprzedaż falowników i przekładni »

    Oodstawowe układy TTL zaliczane do grupy układów o małej skali integracji. Naturalną tendencją konstruktorów jest dążenie do zwiększenia gęstości upakowania układów, a więc do zwiększenia skali integracji do poziomu, jaki umożliwia aktualny stan technologii półprzewodnikowych układów scalonych. Zwiększenie skali integracji układów scalonych jeszcze silniej uwypukla zalety koncepcji scalania. Rośnie szybkość przełączania układów i ich niezawodność, maleje zaś całkowita moc pobierana przez układy oraz zwiększa się ich gęstość upakowania. Stosowanie układów o zwiększonej skali integracji pozwala na uproszczenie i przyspieszenie projektowania i uruchamiania nowych urządzeń. Konstruktor urządzenia nie musi zajmować się projektami takich podzespołów jak liczniki, rejestry, dekodery, sumatory itd., może natomiast cały wysiłek skierować na optymalne wykorzystanie właściwości gotowych podzespołów — optymalne z punktu widzenia projektowanego urządzenia.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Sterowanie falownikami Vacon »

    W każdym tranzystorze jeden z emiterów jest połączony z jedną linią bitu, a drugi — ze wspólną linią słowa. W stanie spoczynku na linii słowa poziom napięcia jest niski, tak iż prąd przewodzącego tranzystora płynie do linii słowa. Dla odczytania informacji z komórki na linię słowa trzeba podać wysoki poziom napięcia. Prąd przewodzącego tranzystora zaczyna płynąć do odpowiadającej temu tranzystorowi linii bitu. Zmiana stanu linii bitu jest wykrywana przez wzmacniacz odczytu. W fazie zapisu komórka jest wybierana w podobny sposób jak przy odczycie. Przy wysokim potencjale na linii słowa stan przerzutnika jest ustalony zależnie od kombinacji napięć w liniach bitów. Przy niskim poziomie napięcia na linii słowa żadne zmiany na liniach bitów nie wpływają na stan komórki.
    Niezależnie od sposobu rozwiązania wewnętrznej sieci logicznej układu scalonego na wejściach i wyjściach układu stosuje się standardowe układy (por. opisy różnych bramek TTL) zapewniające możliwość współpracy z innymi układami na warunkach obowiązujących dla układów określonej serii TTL.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Napędy Danfoss »

    Powstawanie tranzystorów pasożytniczych MOS ogranicza dopuszczalne wartości napięć zasilania, jakie mogą być stosowane w układach scalonych MOS. Podano wartości uzyskiwanych napięć progowych UT i wartości napięć progowych UTF tranzystorów pasożytniczych dla czterech podstawowych technologii układów MOS z kanałem p:
    a) technologii wysoko progowej na krzemie o orientacji krystalograficznej (111) z bramką aluminiową:
    b) technologii nisko progowej na krzemie o orientacji (100) z bramką aluminiową;
    c) technologii z izolatorem w postaci warstw dwutlenku krzemu Si02 i azotku krzemu Si3N4 na krzemie o orientacji (111) z bramką aluminiową;
    d) technologii nisko progowej na krzemie o orientacji (111) z bramką krzemową.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Opisy grawerowane silników »

    Małe rozmiary tranzystora MOS pozwalają na budowę układów scalonych o wielkiej i bardzo wielkiej skali integracji, zawierających obecnie w jednej strukturze do 105 tranzystorów MOS. Jednocześnie prosta technologia pozwala na osiąganie uzysku sprawnych układów MOS dostatecznie dużego na to, aby ich produkcja była opłacalna.
    Rezystancja wejściowa tranzystorów MOS jest na tyle duża, że możliwe jest włączenie ich przez zgromadzenie ładunku na pojemności bramki takiego tranzystora. Właściwość ta jest wykorzystywana w konstrukcji układów dynamicznych MOS — logicznych i pamięciowych.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Grawerowanie oznaczeń »

    Jednakże zasadniczą wadą tranzystorów MOS z kanałem n, wytwarzanych w zasadzie wyłącznie w krzemie o orientacji krystalograficznej (100) jest to, że są one normalnie włączone, to znaczy mają kanał wbudowany. Jednocześnie ładunek powierzchniowy w tlenku izolacyjnym na powierzchni krzemu powoduje powstanie, warstwy inwersyjnej w krzemie, zwierającej sąsiednie elementy.
    Można tego uniknąć przez zastosowanie dwóch środków:
    a) użycie bramki krzemowej zamiast bramki aluminiowej, która
    powoduje, że tranzystor z kanałem n jest normalnie wyłączony;
    b) zwiększenie przewodności powierzchniowej warstwy krzemu podłoża, co powoduje jednak zmniejszenie ruchliwości nośników i stratę zasadniczej zalety układów z tranzystorami n.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Budowa maszyn treningowych dla koni »

    Pierwsze z produkowanych dwufazowe układy dynamiczne MOS były oparte na rozwiązaniach stosowanych w układach statycznych, a różniły się od nich jedynie impulsowym zasilaniem końcówki UGG. Rozwiązania późniejsze w istotny sposób odbiegały od swych statycznych pierwowzorów.
    Dalszym etapem rozwoju bez współczynnikowych układów dynamicznych MOS dwufazowych są układy czterofazowe, to jest sterowane czterema sygnałami zegarowymi. Dla układów czterofazowych charakterystyczne są trzy rodzaje pracy:
    1. Ładowanie wstępne. Tranzystor obciążenia włączony przez właściwy sygnał zegarowy ładuje kondensator wyjściowy układu.
    2. Warunkowe rozładowanie. W zależności od wartości napięcia wejściowego kondensator pamiętający zostaje rozładowany lub nie. -
    3. Pamiętanie sygnału. Ładunek na kondensatorze wyjściowym nie ulega zmianie.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Falownik LG serwis »

    Jednakże dynamiczne rejestry przesuwające mają pewne zalety, które sprawiają, że są one szeroko stosowane. Impulsowe włączanie rezystorów obciążenia przez sygnał zegarowy powoduje, że moc tracona w przeliczeniu na 1 bit jest w nich znacznie mniejsza niż w innych układach. Ponadto w układach bez współczynnikowych stosowane są jednakowe tranzystory, o rozmiarach określonych jedynie przez pożądaną maksymalną częstotliwość pracy układu, znacznie mniejsze od typowych tranzystorów układów statycznych. Pozwala to na zmniejszenie powierzchni podłoża w stosunku do powierzchni podłoża rejestrów statycznych o takiej samej pojemności lub umieszczenie znacznie większej liczby bitów na tej samej powierzchni. Ma to zasadniczy wpływ na uzysk sprawnych układów w procesie produkcyjnym, a więc i na ich cenę. Małe rozmiary użytych tranzystorów pozwalają na zmniejszenie wszystkich pojemności pasożytniczych w układzie, a więc na skrócenie czasów przełączania. Tak na przykład, typowy dynamiczny dwufazowy rejestr przesuwający typu Am 1404A o pojemności 1024 bitów ma minimalną częstotliwość sygnału wejściowego 600 Hz w temperaturze T= 25°C (10 kHz w temperaturze 70°C), a maksymalną równą 5 MHz, przy czym moc pobierana nie przekracza 250 mW.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Przekładnie przemysłowe »

    Następny etap rozwoju układów MOS o wielkiej skali integracji to pamięci półprzewodnikowe. Każda komórka pamięci w pamięciach statycznych zawiera statyczny przerzutnik złożony z dwóch połączonych inwerterów. Dodatkowe tranzystory MOS umożliwiają zapis i odczyt informacji z komórki. Typowym przedstawicielem takich pamięci jest 1024-bitowa pamięć statyczna o dostępie swobodnym 2102 A, w której zastosowano przerzutniki złożone z inwerterów statycznych typu 3, z tranzystorami o kanale n. Czas dostępu wynosi 500 ns (czas cyklu także 500 ns), a moc pobierana około 150 mW. Obecnie produkuje się już pamięci statyczne o pojemnościach do 8192 bitów. Czasy dostępu/cyklu różnych wersji pamięci statycznych MOS wynoszą 100-1000 ns, a moce pobierane 0, 1-M mW/bit.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Automatyka prądu stałego »

    Przed przystąpieniem do omawiania szyny długiej i układów, jakie można w niej stosować, omówimy typową szynę stosowaną w minikomputerach PDP-11, zwaną UNIBUS, co pozwoli na uwypuklenie pewnych cech charakterystycznych dla wszystkich szyn długich.
    Szyna UNIBUS. Urządzenia peryferyjne, procesor i pamięć minikomputera PDP-11 są połączone za pomocą szyny UNIBUS według schematu.
    Sygnały. Szyna UNIBUS zawiera 56 przewodów do przesyłania sygnałów jednokierunkowych i dwukierunkowych. Sygnały jednokierunkowe to sygnały od podzespołów maszyny — procesora i urządzeń peryferyjnych do układu przyznawania kontroli nad szyną {układu koordynatora) oraz sygnały przyznania kontroli od tego układu do podzespołów maszyny. Sygnały dwukierunkowe to 16 sygnałów informacyjnych, 18 sygnałów adresowych oraz pewna liczba sygnałów sterujących.
    Wszystkie transmisje informacji poprzez szynę UNIBUS odbywają się między podzespołem, który otrzymał kontrolę nad szyną od układu koordynatora (master), a podzespołem podporządkowanym — zaadresowanym (slave).

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Cennik grawerowania »

    Różnicowe przesyłanie sygnałów cyfrowych po symetrycznych dwuprzewodowych liniach przesyłowych umożliwia uzyskanie dużej szybkości przesyłania między urządzeniami o różnych potencjałach masy i w warunkach dużych zakłóceń. Ze względu na symetrię linii przesyłowej wszelkie zakłócenia oraz różnica potencjałów mas urządzeń wchodzą na obydwa przewody jednakowo i jeśli odbiornik sygnału różnicowego ma dostatecznie wielki zakres dopuszczalnych poziomów sygnałów wspólnych oraz odpowiednie tłumienie sygnałów wspólnych, zakłócenia nie mają wpływu na pracę układów.
    Ze względu na pożądaną dużą szybkość przesyłania sygnałów dwuprzewodowe linie przesyłowe są dopasowane, co umożliwia uniknięcie odbić w linii.
    Jeżeli nadajnikiem linii jest układ o niewielkiej rezystancji wyjściowej (źródło napięciowe), to linia może być dopasowana tylko na końcu odbiorczym. Jeśli natomiast nadajnikiem linii jest układ o dużej impedancji wyjściowej (źródło prądowe), linia musi być dopasowana na obydwu końcach.

    Data dodania: 18 12 2014 · szczegóły wpisu »

Najnowsze wiadomości: