Reduktor typu NMRV

Reduktor typu NMRV Przesyłanie sygnałów cyfrowych w warunkach dużych zakłóceń lub na znaczne odległości wymaga stosowania specjalnych nadajników i odbiorników linii oraz właściwego wyboru linii przesyłowych. Przy niewielkich długościach linii można stosować linie koncentryczne, zapewniające ochronę przed zakłóceniami, ale ze względu na duży koszt celowe jest stosowanie znacznie tańszych linii płaskich lub skrętek (symetrycznych lub asymetrycznych).
Sygnały cyfrowe można przesyłać w postaci unipolarnych sygnałów liniami jednoprzewodowymi ekranowanymi lub nieekranowanymi (przewodem powrotnym sygnału jest wspólny dla nadajnika i odbiornika przewód masy) albo w postaci sygnałów różnicowych dwuprzewodowymi asymetrycznymi przesyłowymi (na ogół nieekranowanymi).

Szczegóły strony www.reduktory.info:

Komentarze:

Dodaj swój komentarz »

Podlinkuj stronę www.reduktory.info:

Reduktor typu NMRV

Odwiedziny robotów:

Odwiedziny yahoo 43 Odwiedziny googlebot 54

Zobacz podobne wpisy w tej kategorii:

  • Sprzedaż falowników i przekładni »

    Oodstawowe układy TTL zaliczane do grupy układów o małej skali integracji. Naturalną tendencją konstruktorów jest dążenie do zwiększenia gęstości upakowania układów, a więc do zwiększenia skali integracji do poziomu, jaki umożliwia aktualny stan technologii półprzewodnikowych układów scalonych. Zwiększenie skali integracji układów scalonych jeszcze silniej uwypukla zalety koncepcji scalania. Rośnie szybkość przełączania układów i ich niezawodność, maleje zaś całkowita moc pobierana przez układy oraz zwiększa się ich gęstość upakowania. Stosowanie układów o zwiększonej skali integracji pozwala na uproszczenie i przyspieszenie projektowania i uruchamiania nowych urządzeń. Konstruktor urządzenia nie musi zajmować się projektami takich podzespołów jak liczniki, rejestry, dekodery, sumatory itd., może natomiast cały wysiłek skierować na optymalne wykorzystanie właściwości gotowych podzespołów — optymalne z punktu widzenia projektowanego urządzenia.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Falownik LG akcesoria »

    Jednym z ograniczeń, które występują przy projektowaniu układu scalonego, jest liczba wejść i wyjść układu. Liczba ta jest uzależniona od dopuszczalnej liczby końcówek standardowych obudów. Kompromis między funkcjonalną złożonością układu logicznego a liczbą końcówek obudowy staje się coraz trudniejszy do rozwiązania w miarę wzrostu skali integracji i niekiedy zmusza do stosowania sztucznych rozwiązań, polegających na przykład na przypisywaniu końcówkom różnych funkcji zależnie od stanów logicznych na innych końcówkach. Dodatkowym ograniczeniem wnoszonym przez obudowę jest maksymalna moc, jaka może się wydzielić w strukturze scalonej zamykanej w obudowie, co limituje liczbę elementów, jakie mogą wejść w skład scalonej sieci logicznej.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Napędy Danfoss »

    Powstawanie tranzystorów pasożytniczych MOS ogranicza dopuszczalne wartości napięć zasilania, jakie mogą być stosowane w układach scalonych MOS. Podano wartości uzyskiwanych napięć progowych UT i wartości napięć progowych UTF tranzystorów pasożytniczych dla czterech podstawowych technologii układów MOS z kanałem p:
    a) technologii wysoko progowej na krzemie o orientacji krystalograficznej (111) z bramką aluminiową:
    b) technologii nisko progowej na krzemie o orientacji (100) z bramką aluminiową;
    c) technologii z izolatorem w postaci warstw dwutlenku krzemu Si02 i azotku krzemu Si3N4 na krzemie o orientacji (111) z bramką aluminiową;
    d) technologii nisko progowej na krzemie o orientacji (111) z bramką krzemową.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Lenze dystrybutor »

    Tranzystory MOS mają kilka cech, które predestynują je do stosowania w cyfrowych układach scalonych. Są to następujące cechy.
    Jeżeli w układzie scalonym ograniczyć się do jednego typu tranzystorów, np. pMOS, to wszystkie tranzystory na tym samym podłożu są elektrycznie izolowane, gdyż potencjały występujące w układzie zapewniają polaryzację w kierunku zaporowym (lub w najgorszym razie polaryzację zerową) wszystkich złącz p-n. Nie ma więc potrzeby stosowania wysp izolowanych jak w układach bipolarnych. Jedynie w układach MOS o symetrii komplementarnej (zwanych układami COSMOS lub CMOS), zawierających tranzystory MOS, konieczne jest tworzenie wysp izolowanych dla tranzystorów nMOS.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Budowa maszyn treningowych dla koni »

    Pierwsze z produkowanych dwufazowe układy dynamiczne MOS były oparte na rozwiązaniach stosowanych w układach statycznych, a różniły się od nich jedynie impulsowym zasilaniem końcówki UGG. Rozwiązania późniejsze w istotny sposób odbiegały od swych statycznych pierwowzorów.
    Dalszym etapem rozwoju bez współczynnikowych układów dynamicznych MOS dwufazowych są układy czterofazowe, to jest sterowane czterema sygnałami zegarowymi. Dla układów czterofazowych charakterystyczne są trzy rodzaje pracy:
    1. Ładowanie wstępne. Tranzystor obciążenia włączony przez właściwy sygnał zegarowy ładuje kondensator wyjściowy układu.
    2. Warunkowe rozładowanie. W zależności od wartości napięcia wejściowego kondensator pamiętający zostaje rozładowany lub nie. -
    3. Pamiętanie sygnału. Ładunek na kondensatorze wyjściowym nie ulega zmianie.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Przekładnie przemysłowe »

    Następny etap rozwoju układów MOS o wielkiej skali integracji to pamięci półprzewodnikowe. Każda komórka pamięci w pamięciach statycznych zawiera statyczny przerzutnik złożony z dwóch połączonych inwerterów. Dodatkowe tranzystory MOS umożliwiają zapis i odczyt informacji z komórki. Typowym przedstawicielem takich pamięci jest 1024-bitowa pamięć statyczna o dostępie swobodnym 2102 A, w której zastosowano przerzutniki złożone z inwerterów statycznych typu 3, z tranzystorami o kanale n. Czas dostępu wynosi 500 ns (czas cyklu także 500 ns), a moc pobierana około 150 mW. Obecnie produkuje się już pamięci statyczne o pojemnościach do 8192 bitów. Czasy dostępu/cyklu różnych wersji pamięci statycznych MOS wynoszą 100-1000 ns, a moce pobierane 0, 1-M mW/bit.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Sterowanie napędami »

    Jeżeli nie podejmie się odpowiednich kroków dla właściwego dopasowania linii przesyłowych, to przesyłany sygnał cyfrowy zostanie zniekształcony wskutek odbić na końcach linii. Może to doprowadzić do przedłużenia rzeczywistego czasu propagacji sygnału wskutek tego, że zniekształcony sygnał, cyfrowy nie osiągnie poziomu przekraczającego ustalony poziom progowy.
    Należy także wspomnieć o przesłuchach będących wynikiem przenoszenia się wielko częstotliwościowych składowych sygnału z jednego przewodu na inne. Jest to szczególnie ważne tam, gdzie gęstość upakowania układów scalonych jest duża lub gdzie sygnały przesyłane są na duże odległości liniami przesyłowymi nieekranowanymi.
    Omówienie tych podstawowych zagadnień przesyłania sygnałów cyfrowych poprzedzimy krótkim przypomnieniem teorii linii przesyłowych oraz omówieniem parametrów powszechnie stosowanych typów linii.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Napędy przemysłowe serwis »

    Jeżeli jedno z urządzeń wysyła dwa oddzielne sygnały do innego, poczynając od tego samego momentu, to z powodu różnej szybkości nadajników i odbiorników szyny i różnej szybkości propagacji sygnałów w przewodach szyny (wskutek różnego obciążenia pojemnościowego) może wystąpić opóźnienie tych sygnałów względem siebie. Układy współpracy z szyną UNIBUS są tak zaprojektowane, że ta różnica w czasie (skew) wynosi nie więcej niż 75 ns.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Sterowanie przemiennikami »

    W maszynie cyfrowej wykorzystującej szynę może jednocześnie odbywać się tylko jedna transmisja między dwoma dowolnymi spośród urządzeń przyłączonych do szyny długiej. W tej sytuacji jedyny sposób zwiększenia szybkości działania tej maszyny polega na zwiększeniu szybkości przesyłania sygnału przez szynę, zwiększenie bowiem szybkości działania procesora czy zmniejszenie czasu cyklu pamięci przez zastosowanie układów scalonych o bardzo dużej szybkości przełączania nie będzie miało wpływu na szybkość przesyłania informacji w szynie. Szybkość przesyłania informacji w szynie zależy od:
    — czasu propagacji sygnału przez nadajniki szyny,
    — czasu propagacji sygnału wzdłuż linii przesyłowych tworzących szynę,
    — różnicy czasu propagacji różnych sygnałów wzdłuż różnych przewodów szyny,
    — czasu propagacji sygnału przez odbiorniki szyny.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Cennik grawerowania »

    Różnicowe przesyłanie sygnałów cyfrowych po symetrycznych dwuprzewodowych liniach przesyłowych umożliwia uzyskanie dużej szybkości przesyłania między urządzeniami o różnych potencjałach masy i w warunkach dużych zakłóceń. Ze względu na symetrię linii przesyłowej wszelkie zakłócenia oraz różnica potencjałów mas urządzeń wchodzą na obydwa przewody jednakowo i jeśli odbiornik sygnału różnicowego ma dostatecznie wielki zakres dopuszczalnych poziomów sygnałów wspólnych oraz odpowiednie tłumienie sygnałów wspólnych, zakłócenia nie mają wpływu na pracę układów.
    Ze względu na pożądaną dużą szybkość przesyłania sygnałów dwuprzewodowe linie przesyłowe są dopasowane, co umożliwia uniknięcie odbić w linii.
    Jeżeli nadajnikiem linii jest układ o niewielkiej rezystancji wyjściowej (źródło napięciowe), to linia może być dopasowana tylko na końcu odbiorczym. Jeśli natomiast nadajnikiem linii jest układ o dużej impedancji wyjściowej (źródło prądowe), linia musi być dopasowana na obydwu końcach.

    Data dodania: 18 12 2014 · szczegóły wpisu »

Najnowsze wiadomości: