Sterowanie napędami

Sterowanie napędami Jeżeli nie podejmie się odpowiednich kroków dla właściwego dopasowania linii przesyłowych, to przesyłany sygnał cyfrowy zostanie zniekształcony wskutek odbić na końcach linii. Może to doprowadzić do przedłużenia rzeczywistego czasu propagacji sygnału wskutek tego, że zniekształcony sygnał, cyfrowy nie osiągnie poziomu przekraczającego ustalony poziom progowy.
Należy także wspomnieć o przesłuchach będących wynikiem przenoszenia się wielko częstotliwościowych składowych sygnału z jednego przewodu na inne. Jest to szczególnie ważne tam, gdzie gęstość upakowania układów scalonych jest duża lub gdzie sygnały przesyłane są na duże odległości liniami przesyłowymi nieekranowanymi.
Omówienie tych podstawowych zagadnień przesyłania sygnałów cyfrowych poprzedzimy krótkim przypomnieniem teorii linii przesyłowych oraz omówieniem parametrów powszechnie stosowanych typów linii.

Szczegóły strony www.napedy.info.pl:

Komentarze:

Dodaj swój komentarz »

Podlinkuj stronę www.napedy.info.pl:

Sterowanie napędami

Odwiedziny robotów:

Odwiedziny yahoo 49 Odwiedziny googlebot 94

Zobacz podobne wpisy w tej kategorii:

  • Sprzedaż falowników i przekładni »

    Oodstawowe układy TTL zaliczane do grupy układów o małej skali integracji. Naturalną tendencją konstruktorów jest dążenie do zwiększenia gęstości upakowania układów, a więc do zwiększenia skali integracji do poziomu, jaki umożliwia aktualny stan technologii półprzewodnikowych układów scalonych. Zwiększenie skali integracji układów scalonych jeszcze silniej uwypukla zalety koncepcji scalania. Rośnie szybkość przełączania układów i ich niezawodność, maleje zaś całkowita moc pobierana przez układy oraz zwiększa się ich gęstość upakowania. Stosowanie układów o zwiększonej skali integracji pozwala na uproszczenie i przyspieszenie projektowania i uruchamiania nowych urządzeń. Konstruktor urządzenia nie musi zajmować się projektami takich podzespołów jak liczniki, rejestry, dekodery, sumatory itd., może natomiast cały wysiłek skierować na optymalne wykorzystanie właściwości gotowych podzespołów — optymalne z punktu widzenia projektowanego urządzenia.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Serwis układów falowników »

    Przekrój poprzeczny tranzystora MOS wykonanego technologią planarną. Na podłożu typu wykonano w wyniku dyfuzji obszary drenu i źródła. Powierzchnia krzemu pokryta jest warstwą izolatora (na ogół dwutlenku krzemu), na którego powierzchni znajdują się metaliczne połączenia między elementami układu scalonego MOS. Przez otwory (okna) w tej warstwie krzemu wykonane są połączenia do obszarów źródeł i drenu.
    Grubość warstwy dwutlenku krzemu wynosi około 1000 nm i jest to tzw. gruba warstwa tlenku. Nad obszarem kanału tranzystora MOS, między obszarami p źródła i drenu, grubość izolacyjnej warstwy tlenku wynosi tylko około 100 nm, co pozwala na sterowanie przewodnością tego kanału za pomocą potencjału elektrody bramki tranzystora MOS

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Napędy Danfoss »

    Powstawanie tranzystorów pasożytniczych MOS ogranicza dopuszczalne wartości napięć zasilania, jakie mogą być stosowane w układach scalonych MOS. Podano wartości uzyskiwanych napięć progowych UT i wartości napięć progowych UTF tranzystorów pasożytniczych dla czterech podstawowych technologii układów MOS z kanałem p:
    a) technologii wysoko progowej na krzemie o orientacji krystalograficznej (111) z bramką aluminiową:
    b) technologii nisko progowej na krzemie o orientacji (100) z bramką aluminiową;
    c) technologii z izolatorem w postaci warstw dwutlenku krzemu Si02 i azotku krzemu Si3N4 na krzemie o orientacji (111) z bramką aluminiową;
    d) technologii nisko progowej na krzemie o orientacji (111) z bramką krzemową.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Lenze dystrybutor »

    Tranzystory MOS mają kilka cech, które predestynują je do stosowania w cyfrowych układach scalonych. Są to następujące cechy.
    Jeżeli w układzie scalonym ograniczyć się do jednego typu tranzystorów, np. pMOS, to wszystkie tranzystory na tym samym podłożu są elektrycznie izolowane, gdyż potencjały występujące w układzie zapewniają polaryzację w kierunku zaporowym (lub w najgorszym razie polaryzację zerową) wszystkich złącz p-n. Nie ma więc potrzeby stosowania wysp izolowanych jak w układach bipolarnych. Jedynie w układach MOS o symetrii komplementarnej (zwanych układami COSMOS lub CMOS), zawierających tranzystory MOS, konieczne jest tworzenie wysp izolowanych dla tranzystorów nMOS.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Opisy grawerowane silników »

    Małe rozmiary tranzystora MOS pozwalają na budowę układów scalonych o wielkiej i bardzo wielkiej skali integracji, zawierających obecnie w jednej strukturze do 105 tranzystorów MOS. Jednocześnie prosta technologia pozwala na osiąganie uzysku sprawnych układów MOS dostatecznie dużego na to, aby ich produkcja była opłacalna.
    Rezystancja wejściowa tranzystorów MOS jest na tyle duża, że możliwe jest włączenie ich przez zgromadzenie ładunku na pojemności bramki takiego tranzystora. Właściwość ta jest wykorzystywana w konstrukcji układów dynamicznych MOS — logicznych i pamięciowych.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Falowniki przemysłowe »

    Po zaprojektowaniu sieci kombinacyjnej i sekwencyjnej, realizującej daną funkcję logiczną, przechodzi się do etapu realizacji projektu, korzystając z elementów dynamicznych MOS określonego typu: dwufazowych współczynnikowych lub bez współczynnikowych bądź czterofazowych. Przy tym muszą być spełnione warunki dotyczące możliwości obciążenia stopni sterowanych kolejnymi fazami sygnału zegarowego przez układy sterowane innymi fazami. Tak zrealizowany projekt poddaje się procesowi minimalizacji liczby elementów. Ten etap projektowania układów scalonych MOS jest szczególnie trudny i osiągnięte wyniki zależą w znacznym stopniu od doświadczenia i wyobraźni projektanta. Każdy z producentów układów scalonych MOS ma własne, pilnie strzeżone metody projektowania układów wielkoscalonych MOS. Z tego względu literatura na ten temat jest bardzo uboga.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Przekładnie przemysłowe »

    Następny etap rozwoju układów MOS o wielkiej skali integracji to pamięci półprzewodnikowe. Każda komórka pamięci w pamięciach statycznych zawiera statyczny przerzutnik złożony z dwóch połączonych inwerterów. Dodatkowe tranzystory MOS umożliwiają zapis i odczyt informacji z komórki. Typowym przedstawicielem takich pamięci jest 1024-bitowa pamięć statyczna o dostępie swobodnym 2102 A, w której zastosowano przerzutniki złożone z inwerterów statycznych typu 3, z tranzystorami o kanale n. Czas dostępu wynosi 500 ns (czas cyklu także 500 ns), a moc pobierana około 150 mW. Obecnie produkuje się już pamięci statyczne o pojemnościach do 8192 bitów. Czasy dostępu/cyklu różnych wersji pamięci statycznych MOS wynoszą 100-1000 ns, a moce pobierane 0, 1-M mW/bit.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Automatyka prądu stałego »

    Przed przystąpieniem do omawiania szyny długiej i układów, jakie można w niej stosować, omówimy typową szynę stosowaną w minikomputerach PDP-11, zwaną UNIBUS, co pozwoli na uwypuklenie pewnych cech charakterystycznych dla wszystkich szyn długich.
    Szyna UNIBUS. Urządzenia peryferyjne, procesor i pamięć minikomputera PDP-11 są połączone za pomocą szyny UNIBUS według schematu.
    Sygnały. Szyna UNIBUS zawiera 56 przewodów do przesyłania sygnałów jednokierunkowych i dwukierunkowych. Sygnały jednokierunkowe to sygnały od podzespołów maszyny — procesora i urządzeń peryferyjnych do układu przyznawania kontroli nad szyną {układu koordynatora) oraz sygnały przyznania kontroli od tego układu do podzespołów maszyny. Sygnały dwukierunkowe to 16 sygnałów informacyjnych, 18 sygnałów adresowych oraz pewna liczba sygnałów sterujących.
    Wszystkie transmisje informacji poprzez szynę UNIBUS odbywają się między podzespołem, który otrzymał kontrolę nad szyną od układu koordynatora (master), a podzespołem podporządkowanym — zaadresowanym (slave).

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Sterowanie przemiennikami »

    W maszynie cyfrowej wykorzystującej szynę może jednocześnie odbywać się tylko jedna transmisja między dwoma dowolnymi spośród urządzeń przyłączonych do szyny długiej. W tej sytuacji jedyny sposób zwiększenia szybkości działania tej maszyny polega na zwiększeniu szybkości przesyłania sygnału przez szynę, zwiększenie bowiem szybkości działania procesora czy zmniejszenie czasu cyklu pamięci przez zastosowanie układów scalonych o bardzo dużej szybkości przełączania nie będzie miało wpływu na szybkość przesyłania informacji w szynie. Szybkość przesyłania informacji w szynie zależy od:
    — czasu propagacji sygnału przez nadajniki szyny,
    — czasu propagacji sygnału wzdłuż linii przesyłowych tworzących szynę,
    — różnicy czasu propagacji różnych sygnałów wzdłuż różnych przewodów szyny,
    — czasu propagacji sygnału przez odbiorniki szyny.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Cennik grawerowania »

    Różnicowe przesyłanie sygnałów cyfrowych po symetrycznych dwuprzewodowych liniach przesyłowych umożliwia uzyskanie dużej szybkości przesyłania między urządzeniami o różnych potencjałach masy i w warunkach dużych zakłóceń. Ze względu na symetrię linii przesyłowej wszelkie zakłócenia oraz różnica potencjałów mas urządzeń wchodzą na obydwa przewody jednakowo i jeśli odbiornik sygnału różnicowego ma dostatecznie wielki zakres dopuszczalnych poziomów sygnałów wspólnych oraz odpowiednie tłumienie sygnałów wspólnych, zakłócenia nie mają wpływu na pracę układów.
    Ze względu na pożądaną dużą szybkość przesyłania sygnałów dwuprzewodowe linie przesyłowe są dopasowane, co umożliwia uniknięcie odbić w linii.
    Jeżeli nadajnikiem linii jest układ o niewielkiej rezystancji wyjściowej (źródło napięciowe), to linia może być dopasowana tylko na końcu odbiorczym. Jeśli natomiast nadajnikiem linii jest układ o dużej impedancji wyjściowej (źródło prądowe), linia musi być dopasowana na obydwu końcach.

    Data dodania: 18 12 2014 · szczegóły wpisu »

Najnowsze wiadomości: