Strony związane z hasłem 'dystrybutor':

  • Schematy falowników Siemens »

    W zależności od sposobu wykonania tranzystora MOS możliwe jest uzyskanie dwóch rodzajów tranzystorów:
    a) tranzystora, który może przewodzić prąd między źródłem a drenem przy zerowym napięciu UGS między bramką a źródłem (jest to tranzystor z kanałem zubożanym lub inaczej — tranzystor z kanałem wbudowanym);
    b) tranzystora, w którym dla uzyskania przewodnictwa między drenem a źródłem niezbędne jest przyłożenie między bramką a źródłem napięcia UGS większego od napięcia progowego tranzystora (jest to tranzystor z kanałem wzbogacanym lub inaczej — tranzystor z kanałem indukowanym).

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Serwis układów falowników »

    Przekrój poprzeczny tranzystora MOS wykonanego technologią planarną. Na podłożu typu wykonano w wyniku dyfuzji obszary drenu i źródła. Powierzchnia krzemu pokryta jest warstwą izolatora (na ogół dwutlenku krzemu), na którego powierzchni znajdują się metaliczne połączenia między elementami układu scalonego MOS. Przez otwory (okna) w tej warstwie krzemu wykonane są połączenia do obszarów źródeł i drenu.
    Grubość warstwy dwutlenku krzemu wynosi około 1000 nm i jest to tzw. gruba warstwa tlenku. Nad obszarem kanału tranzystora MOS, między obszarami p źródła i drenu, grubość izolacyjnej warstwy tlenku wynosi tylko około 100 nm, co pozwala na sterowanie przewodnością tego kanału za pomocą potencjału elektrody bramki tranzystora MOS

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Profesjonalny dobór falowników »

    Momenty dodatkowe spowodowane są nieodpowiednim wykonaniem części ustroju, nieodpowiednim montażem tych części, niewłaściwą eksploatacją miernika, wpływami obcymi itp. Działanie momentów dodatkowych jest szkodliwe, ponieważ zmieniają one wskazania miernika. Wpływ momentów dodatkowych na wskazania objaśniony zostanie na przykładzie momentu dodatkowego wywołanego tarciem w łożyskach organu ruchomego — momentu tarciowego. Zakłada się w tym celu, że organ ruchomy miernika został wyprowadzony z położenia równowagi oj do położenia a2 przez siłę zewnętrzną. Można tego dokonać np. przesuwając wskazówkę palcem. Po usunięciu siły zewnętrznej organ ruchomy usiłuje powrócić do położenia równowagi ax pod działaniem momentu wypadkowego wytworzonego przez różnicę momentu zwracającego w położeniu ct2, a mianowicie — M22 oraz momentu napędowego +Mt. Moment tarciowy Mt, którego kierunek jest zawsze przeciwny kierunkowi ruchu, powoduje zatrzymanie się organu ruchomego w nowym położeniu równowagi a.

    Data dodania: 17 12 2014 · szczegóły wpisu »
  • Napędy przemysłowe serwis »

    Jeżeli jedno z urządzeń wysyła dwa oddzielne sygnały do innego, poczynając od tego samego momentu, to z powodu różnej szybkości nadajników i odbiorników szyny i różnej szybkości propagacji sygnałów w przewodach szyny (wskutek różnego obciążenia pojemnościowego) może wystąpić opóźnienie tych sygnałów względem siebie. Układy współpracy z szyną UNIBUS są tak zaprojektowane, że ta różnica w czasie (skew) wynosi nie więcej niż 75 ns.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Automatyka prądu stałego »

    Przed przystąpieniem do omawiania szyny długiej i układów, jakie można w niej stosować, omówimy typową szynę stosowaną w minikomputerach PDP-11, zwaną UNIBUS, co pozwoli na uwypuklenie pewnych cech charakterystycznych dla wszystkich szyn długich.
    Szyna UNIBUS. Urządzenia peryferyjne, procesor i pamięć minikomputera PDP-11 są połączone za pomocą szyny UNIBUS według schematu.
    Sygnały. Szyna UNIBUS zawiera 56 przewodów do przesyłania sygnałów jednokierunkowych i dwukierunkowych. Sygnały jednokierunkowe to sygnały od podzespołów maszyny — procesora i urządzeń peryferyjnych do układu przyznawania kontroli nad szyną {układu koordynatora) oraz sygnały przyznania kontroli od tego układu do podzespołów maszyny. Sygnały dwukierunkowe to 16 sygnałów informacyjnych, 18 sygnałów adresowych oraz pewna liczba sygnałów sterujących.
    Wszystkie transmisje informacji poprzez szynę UNIBUS odbywają się między podzespołem, który otrzymał kontrolę nad szyną od układu koordynatora (master), a podzespołem podporządkowanym — zaadresowanym (slave).

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Sterowanie przemiennikami »

    W maszynie cyfrowej wykorzystującej szynę może jednocześnie odbywać się tylko jedna transmisja między dwoma dowolnymi spośród urządzeń przyłączonych do szyny długiej. W tej sytuacji jedyny sposób zwiększenia szybkości działania tej maszyny polega na zwiększeniu szybkości przesyłania sygnału przez szynę, zwiększenie bowiem szybkości działania procesora czy zmniejszenie czasu cyklu pamięci przez zastosowanie układów scalonych o bardzo dużej szybkości przełączania nie będzie miało wpływu na szybkość przesyłania informacji w szynie. Szybkość przesyłania informacji w szynie zależy od:
    — czasu propagacji sygnału przez nadajniki szyny,
    — czasu propagacji sygnału wzdłuż linii przesyłowych tworzących szynę,
    — różnicy czasu propagacji różnych sygnałów wzdłuż różnych przewodów szyny,
    — czasu propagacji sygnału przez odbiorniki szyny.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Sterowanie napędami »

    Jeżeli nie podejmie się odpowiednich kroków dla właściwego dopasowania linii przesyłowych, to przesyłany sygnał cyfrowy zostanie zniekształcony wskutek odbić na końcach linii. Może to doprowadzić do przedłużenia rzeczywistego czasu propagacji sygnału wskutek tego, że zniekształcony sygnał, cyfrowy nie osiągnie poziomu przekraczającego ustalony poziom progowy.
    Należy także wspomnieć o przesłuchach będących wynikiem przenoszenia się wielko częstotliwościowych składowych sygnału z jednego przewodu na inne. Jest to szczególnie ważne tam, gdzie gęstość upakowania układów scalonych jest duża lub gdzie sygnały przesyłane są na duże odległości liniami przesyłowymi nieekranowanymi.
    Omówienie tych podstawowych zagadnień przesyłania sygnałów cyfrowych poprzedzimy krótkim przypomnieniem teorii linii przesyłowych oraz omówieniem parametrów powszechnie stosowanych typów linii.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Drukarki 3d dystrybutor »

    Dzisiejsza technologia drukarek 3D pozwala na nieograniczone możliwości. Wykorzystanie nowoczesnych materiałów, gwarantuje wysoką jakość oraz trwałość. Nasza firma ma możliwość udostępnieniu Państwu sprzętu umożliwiającego drukowanie całych elementów, lub brakujących części. Serdecznie zapraszamy do odwiedzenia naszej strony internetowej.

    Data dodania: 17 12 2014 · szczegóły wpisu »
  • Jak dobrać falownik »

    Wzorce jednostek elektrycznych wykonane z największą osiągalną dokładnością, tzw. etalony, stanowią prawną podstawę gospodarki pomiarowej. Etalony znajdują się w laboratoriach państwowych; w Polsce przechowywane są w Centralnym Urzędzie Jakości i Miar (CUJM) w Warszawie. W laboratoriach naukowych i przemysłowych korzysta się z wzorców wtórnych tzw. wzorców laboratoryjnych wykonanych z ograniczoną, ale ściśle określoną dokładnością. Wzorce laboratoryjne budowane są jako wzorce różnicy potencjałów, oporu, indukcyjności własnej i wzajemnej oraz wzorce pojemności. Z uwagi na trudności związane z budową i użytkowaniem wzorców prądu elektrycznego wzorce takie wykonywane są jedynie jako etalony. Etalonów ze względu na ograniczony zakres zastosowania opisywać nie będziemy. Omawiane poniżej wzorce są wzorcami laboratoryjnymi.

    Data dodania: 17 12 2014 · szczegóły wpisu »
  • Falownik LG serwis »

    Jednakże dynamiczne rejestry przesuwające mają pewne zalety, które sprawiają, że są one szeroko stosowane. Impulsowe włączanie rezystorów obciążenia przez sygnał zegarowy powoduje, że moc tracona w przeliczeniu na 1 bit jest w nich znacznie mniejsza niż w innych układach. Ponadto w układach bez współczynnikowych stosowane są jednakowe tranzystory, o rozmiarach określonych jedynie przez pożądaną maksymalną częstotliwość pracy układu, znacznie mniejsze od typowych tranzystorów układów statycznych. Pozwala to na zmniejszenie powierzchni podłoża w stosunku do powierzchni podłoża rejestrów statycznych o takiej samej pojemności lub umieszczenie znacznie większej liczby bitów na tej samej powierzchni. Ma to zasadniczy wpływ na uzysk sprawnych układów w procesie produkcyjnym, a więc i na ich cenę. Małe rozmiary użytych tranzystorów pozwalają na zmniejszenie wszystkich pojemności pasożytniczych w układzie, a więc na skrócenie czasów przełączania. Tak na przykład, typowy dynamiczny dwufazowy rejestr przesuwający typu Am 1404A o pojemności 1024 bitów ma minimalną częstotliwość sygnału wejściowego 600 Hz w temperaturze T= 25°C (10 kHz w temperaturze 70°C), a maksymalną równą 5 MHz, przy czym moc pobierana nie przekracza 250 mW.

    Data dodania: 18 12 2014 · szczegóły wpisu »
  • Falowniki »

    Wartość wielkości mierzonej wskazana przez miernik różni się w przeważającej liczbie przypadków od wartości rzeczywistej tej wielkości — wskazania miernika są obarczone uchybem. Na występowanie i wartość uchybów wpływają właściwości konstrukcyjne ustroju i układu miernika (np. tarcie w łożyskach, niestaranne wykonanie elementów układu), niedokładne wykonanie podziałki miernika oraz warunki zewnętrzne (np. temperatura otoczenia) odbiegające od warunków, przy których wyznaczono położenie kresek podziałki. Tablice zawierające poprawki dla ocyfrowanych kresek podziałki (tablica poprawek) sporządza się przy sprawdzaniu i przy legalizacji mierników (legalizacja — stwierdzenie przez CUJM lub upoważnioną przez niego placówkę dokładności miernika i jego przydatności do pomiarów). Przedział wartości wielkości mierzonej odpowiadający całej podziałce miernika nazywa się jego zakresem wskazań. Ta część zakresu wskazań, dla której spełnione są wymagania dotyczące dokładności pomiaru, nosi nazwę zakresu pomiarowego. Polska norma PN/E-06501 przewiduje, że każdy miernik powinien należeć do określonej klasy dokładności. Klasa dokładności jest umownym oznaczeniem zasadniczych własności miernika, a zwłaszcza jego dokładności. Klasy dokładności oraz odpowiadające im największe dopuszczalne uchyby względne mierników 8%, tzw. uchyby graniczne.

    Data dodania: 17 12 2014 · szczegóły wpisu »
  • Instrukcja do falownika »

    Tłumik magnetyczny stanowi blaszka aluminiowa osadzona na osi organu ruchomego. Koniec blaszki znajduje się w szczelinie magnesu trwałego. Podczas ruchu organu ruchomego blaszka przecina pole magnesu. W blaszce indukują się prądy elektryczne. Wydzielające się wskutek przepływu prądu ciepło jest rozpraszane. Nadmiar energii pobieranej przez organ ruchomy przetwarzany jest w energię cieplną. Im szybszy ruch organu ruchomego, tym większe są prądy i tym silniejsze jest tłumienie. Tłumik powietrzny ma postać aluminiowego skrzydła umocowanego na osi organu ruchomego. Skrzydło mieści się w zamkniętej komorze. Szczeliny między brzegami skrzydła a ścianami komory umożliwiają przy ruchu skrzydła tłoczenie powietrza z jednej części komory do drugiej. Ruch powietrza powoduje jego ogrzanie. Tak więc i w tym przypadku nadmiar energii przetwarzany jest w energię cieplną. Im szybszy jest ruch, tym bardziej ogrzewa się powietrze i tym silniejsze jest tłumienie. Tłumik cieczowy ma w komorze zamiast powietrza ciecz (olej mineralny, olej kostny, glicerynę, olej silikatowy itp. ).

    Data dodania: 17 12 2014 · szczegóły wpisu »
  • falowniki MX2 »

    Amper jest natężeniem prądu elektrycznego nie zmieniającego się, który, płynąc w dwóch równoległych prostoliniowych nieskończenie długich przewodach, o przekroju okrągłym znikomo małym, umieszczonych w próżni w odległości jednego metra jeden od drugiego, wywołałby między tymi przewodami siłę równą 2 • 10-7 niutona na każdy metr długości przewodu. 1 Wolt jest różnicą potencjałów elektrycznych między dwoma punktami przewodu liniowego, w którym płynie prąd nie zmieniający się o natężeniu jednego ampera, gdy moc pobierana między tymi punktami jest równa jednemu watowi (tzn. jednemu dżulowi na sekundę). 1 Om jest oporem elektrycznym, istniejącym między dwoma punktami przewodu, gdy niezmienna różnica potencjałów jednego wolta, działająca między tymi dwoma punktami, wywołuje w tym przewodzie prąd jednego ampera, a przewód nie jest źródłem siły elektromotorycznej. Dane są dwa równoległe prostoliniowe nieskończenie długie przewody o przekroju okrągłym, znikomo małym, umieszczone w próżni w odległości jednego metra od siebie. Przez oba przewody płynie jednakowy prąd stały, wskutek czego między przewodami działa siła równa 10 niutona na metr długości przewodu. Obliczyć prąd płynący przez przewody.

    Data dodania: 17 12 2014 · szczegóły wpisu »
  • Hitachi falowniki SJ700 »

    Wzorcami pojemności są kondensatory powietrzne, mikowe lub polistyrenowe. Kondensatory wzorcowe powietrzne mają elektrody w postaci okrągłych płyt z magnalium (stopu magnezu i aluminium). Płyty ustawione są równolegle jedna nad drugą w niewielkiej odległości od siebie (ok. 2 mm) i dołączone na przemian do dwóch zacisków. Zachowanie właściwych odstępów między płytami zapewniają podkładki z bursztynu lub polistyrenu (styrofleksu) — materiałów izolacyjnych o bardzo dużym oporze właściwym. Wzorce powietrzne wykonywane są również jako kondensatory o zmiennej pojemności (wzorce nastawne). Zbudowane są one podobnie do powszechnie znanych kondensatorów pokrętnych stosowanych w radiotechnice. Dla ochrony przed wpływami obcych pól elektrycznych umieszcza się kondensatory powietrzne w metalowych obudowach, stanowiących ekrany elektrostatyczne. Polska norma PN/E/-06501 „Mierniki elektryczne wskazówkowe. Ogólne wymagania techniczne" definiuje mierniki w sposób następujący: Miernik wskazówkowy — miernik przeznaczony do wskazywania z określoną dokładnością wartości wielkości mierzonej za pomocą wskazówki materialnej lub świetlnej, przesuwającej się wzdłuż podziałki.

    Data dodania: 17 12 2014 · szczegóły wpisu »